Homogeneous bent functions of degree n in 2n variables do not exist for n>3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the degree of homogeneous bent functions

It is well known that the degree of a 2m-variable bent function is at most m. However, the case in homogeneous bent functions is not clear. In this paper, it is proved that there is no homogeneous bent functions of degree m in 2m variables when m > 3; there is no homogenous bent function of degree m− 1 in 2m variables when m > 4; Generally, for any nonnegative integer k, there exists a positive...

متن کامل

Homogeneous bent functions

This paper discusses homogeneous bent functions. The space of homogeneous functions of degree three in six boolean variables was exhaustively searched and thirty bent functions were found. These are found to occur in a single orbit under the action of relabeling of the variables. The homogeneous bent functions identiied exhibit interesting combinatorial structures and are, to the best of our kn...

متن کامل

Construction of cubic homogeneous boolean bent functions

We prove that cubic homogeneous bent functions f : V2n → GF(2) exist for all n ≥ 3 except for n = 4.

متن کامل

On the nonexistence of homogeneous rotation symmetric bent Boolean functions of degree greater than two

In this paper we present a result towards the conjectured nonexistence of homogeneous rotation symmetric bent functions having degree > 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2004

ISSN: 0166-218X

DOI: 10.1016/j.dam.2004.02.006