Homogeneous bent functions of degree n in 2n variables do not exist for n>3
نویسندگان
چکیده
منابع مشابه
On the degree of homogeneous bent functions
It is well known that the degree of a 2m-variable bent function is at most m. However, the case in homogeneous bent functions is not clear. In this paper, it is proved that there is no homogeneous bent functions of degree m in 2m variables when m > 3; there is no homogenous bent function of degree m− 1 in 2m variables when m > 4; Generally, for any nonnegative integer k, there exists a positive...
متن کاملHomogeneous bent functions
This paper discusses homogeneous bent functions. The space of homogeneous functions of degree three in six boolean variables was exhaustively searched and thirty bent functions were found. These are found to occur in a single orbit under the action of relabeling of the variables. The homogeneous bent functions identiied exhibit interesting combinatorial structures and are, to the best of our kn...
متن کاملConstruction of cubic homogeneous boolean bent functions
We prove that cubic homogeneous bent functions f : V2n → GF(2) exist for all n ≥ 3 except for n = 4.
متن کاملOn the nonexistence of homogeneous rotation symmetric bent Boolean functions of degree greater than two
In this paper we present a result towards the conjectured nonexistence of homogeneous rotation symmetric bent functions having degree > 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2004
ISSN: 0166-218X
DOI: 10.1016/j.dam.2004.02.006